Generalization of Clustering Coefficients to Signed Correlation Networks

نویسندگان

  • Giulio Costantini
  • Marco Perugini
چکیده

The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coefficients. In this contribution, we illustrate the importance of the distinction between positive and negative edges in networks based on correlation matrices. The clustering coefficient is generalized to signed correlation networks: three new indices are introduced that take edge signs into account, each derived from an existing and widely used formula. The performances of the new indices are illustrated and compared with the performances of the unsigned indices, both on a signed simulated network and on a signed network based on actual personality psychology data. The results show that the new indices are more resistant to sample variations in correlation networks and therefore have higher convergence compared with the unsigned indices both in simulated networks and with real data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Signed Edges with O(n log n) Queries

Social networks and interactions in social media involve both positive and negative relationships. Signed graphs capture both types of relationships: positive edges correspond to pairs of “friends”, and negative edges to pairs of “foes”. The edge sign prediction problem is an important graph mining task for which many heuristics have recently been proposed [LHK10a; LHK10b]. In this paper we mod...

متن کامل

A Correlation Clustering Approach to Link Classification in Signed Networks

Motivated by social balance theory, we develop a theory of link classification in signed networks using the correlation clustering index as measure of label regularity. We derive learning bounds in terms of correlation clustering within three fundamental transductive learning settings: online, batch and active. Our main algorithmic contribution is in the active setting, where we introduce a new...

متن کامل

A Correlation Clustering Approach to Link Classification in Signed Networks -- Full Version --

Motivated by social balance theory, we develop a theory of link classification in signed networks using the correlation clustering index as measure of label regularity. We derive learning bounds in terms of correlation clustering within three fundamental transductive learning settings: online, batch and active. Our main algorithmic contribution is in the active setting, where we introduce a new...

متن کامل

Brazilian Congress structural balance analysis

In this work, we study the behavior of Brazilian politicians and political parties with the help of clustering algorithms for signed social networks. For this purpose, we extract and analyze a collection of signed networks representing voting sessions of the lower house of Brazilian National Congress. We process all available voting data for the period between 2011 and 2016, by considering voti...

متن کامل

Signal processing approaches as novel tools for the clustering of N-acetyl-β-D-glucosaminidases

Nowadays, the clustering of proteins and enzymes in particular, are one of the most popular topics in bioinformatics. Increasing number of chitinase genes from different organisms and their sequences have beenidentified. So far, various mathematical algorithms for the clustering of chitinase genes have been used butmost of them seem to be confusing and sometimes insufficient. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014